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Abstract-This paper presents an adjoint approach. derived from the reciprocal theorem. for the
sensitivity analysis of linear dynamic thermoelastic systems. The variation of a general response
functional is eltpresscd in eltplicit form with respect to variations of the design fields which consist
of the material properties. applied loads. prescribed boundary. initial conditions. and the structural
shape. The functional is dependent on these design quantities as wel1 as the fol1owing implicity
defined response fields: displ.u:ement. temperature. stress. strain. heat l1ux. temperature gradient.
re'lction forces. and reaction surface l1ux. The formulation incorporates the reciprocal relation
between variations of the real system dcsign and response fields and an <ldjoint state. Here. con
volution is employed in lieu of time mappings used in other transient <ldjoint sensitivity derivations.
Sp..-ci'llizations of the formulation to uncoupled. combined quasi-static uncoupled...nd steady-st,lIe
thermoehlsticity arc ..Iso presented. The linite element method is used to demonstrate the arrlication
of the formulation to a rroblem in automobile engine design.

1. INTRODUCTION

One can define a general performance function.1I to characterize asystem in terms ofexplicit
design lklds and implicit response lklds. Design sensitivity analysis determines an explicit
relationship between the variation of the design fields and the resulting variation in the
performance functional. For a dynamic thermoelastic system. the explicit quantities in the
response functional definition arc the material properties. applied loads. prescribed bound
ary conditions. initial conditions. and the structural shape; while the implicit quantities
include displacement. temper<lture. str~lin. temper<lture gradient. stress. heat !lux vector.
reaction force. and re<lction surf<lce !lux fields. The design quantities and an initial-boun
dary-value problem governing the dynamic thermoel<lstic system implicitly determine these
latter fields. Typically. the performance functional characterizes one or more design criteria
for the system. For example. the functional might describe the maximum stress. mean stress.
or stress amplitude at a point in the body during a load cycle. or the temperuture and its
gradient in .1 region of the body.

Design sensitivity analysis provides valuable information throughout the design
process. When incorporated in a Taylor series expansion, the sensitivities estimate the
performance of modified designs without additional analyses. Sensitivities arc also integral
parts of optimal design algorithms (Vanderplaats. 1984), identification studies (Flanigan.
1987). reliability analyses (Ang and Tang. 1975), and inverse problems (Beck ef al.. 1985).

Design sensitivity analysis for elastic systems has been a subject ofconsiderable interest
during the past decade. For an extensive list of references see Olholf and Taylor (1983).
Haftka and Grandhi (1986). Choi £'1 al. (1988) and Tortorelli el al. (1990). More recently.
several papers appeared in which sensitivities for thermoelastic systems are derived. Dems
and MrOl (1987) used an adjoint approach and direct differentiation to derive the design
sensitivities for an uncoupled dynamic. thermoelastic system. They used a stress constitutive
model which accommodated nonlinear elastic dependencies on strain and temperature.
A linear isotropic model described the thermal constitutive relationship. They presented

lot77
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sensitivities for a general performance functional. dependent on strain. displacement. tem
perature. material properties. applied loads. and shape. Dems and Mroz used the material
derivative concept (Haug e! al.. 1986) to derive shape sensitivities. Meric (1986) derived
the design sensitivities for linear. isotropic. steady-state thermoelastic systems using the
Lagrange multiplier method (Belegundu. 1985). In this formulation. the design functional
is dependent on stress. strain. heat flux. displacement. temperature. reaction forces. reaction
surface tl ux. applied loads. and prescribed boundary conditions. Meric (1988) obtained
shape sensitivities for dynamically-loaded. nonlocal thermoelastic solids using the Lagrange
multiplier and material derivative methods. Shape sensitivities for nonlinear. dynamic.
uncoupled thermoelastic systems are presented in Tortorelli e! al. (1989).

Direct ditferentiation sensitivity analysis methods require the solution of a distinct
pseudo problem to determine the derivatives of the response nelds with respect to each
design parameter. The chain rule is then applied to the response d..:rivatives to evaluate the
sensitivities of th..: p..:rformance funetionals. In the adjoint method. the sensitivities are
evaluated directly after an adjoint problem is solved for each functional. Thus. if the number
of d..:sign param..:t..:rs ..:xc..:eds th..: numb..:r of performance functionals. then the adjoint
method is preferred because it requires fewer solutions. If the number of performanc..:
fum:tionals is larg..: or the sensitivities of the compkt..: respons..: lidds ar..: requir..:d. th..:n the
direct dilfer..:ntiation approach is prt:f..:rred. This pap..:r pursues th..: adjoint approach.

Th..: following three s..:ctions pr..:s..:nt th..: explicit sensitivity analysis for a g..:n..:ral
performanc..: functional ddin..:d over a dynamic thermoelastic system. The sensitivity for
Illulation uses reciprocity between load and response variations of the real load system and
load adjoint system (I)ellls and Mroz. 19XJ). The convolution (Tortorelli e! al.. 1990)
n:places time mappings us..:d in pr..:vious transient adjoint sensitivity analyses (Tortorelli
and Ilaher. JI)XI). Domain parameterization (llah..:r; 1987: Phelan and lIaber. InS). an
all..:rnative to the materi;1I d..:rivativ..: m..:thod. is us..:d to deriv..: ..:xplicit sensitivities with
respect to shape variations, This methodology ol1"crs an alternativ..: to previous adjoint
sensitivity formulations and ..:xtends them hy consid..:ring the fully-coupled problem. Sen
sitivities for the uncoupled theory. combined quasi-static uncoupled theory. and steady
state theory arc given in Section 5. In Section ('. a finite clement implementation of the
formulation illustrates the appliGltion of the methodology to automobile ..:ngine d..:sign.

:!. SENSITIVITY PROBLEM AND GOV/'({l"ING Et)UAT10NS

Consider the general performance functional which characterizes some design crilerion
of a dynamic thermoelastic system:

G =1[1/(11,. £". S'". :J, .t!.. lj,. C"k!' p. A". c. AI,,. 00 • h,. r) de

+t,lI(II,. Sf. ,'i.lj'. II.:J, ) dll] tiL (I)

The response lIe1ds consist of the displacement vector u(x. r). inlinitt:sil1lal strain tensor
E(x. r). Cauchy stress t..:nsor S(x, r). rclativ..: temperature :J(x. r). temperature gradi..:nt
g(x. r). heat !lux wctor q(x. r). surf;lce traction s(x. r). and surl:lee !lux q'(x. r).t The
symmetric elasticity tensor C(x). density p(x). symmetric conductivity tensor K(x). specific
h..:at C(xl. symmetric stress··temp..:ratur..: tensor M(x). fixed rt:ference temperatur..: Oo(x).

body force hex. r). heat supply rex. r). convection coeflicient h(x). and sink t..:mperuture
:J, (x. r) arc all explicit design fields,

The absolute temperutur..: O(x. r) == a+00 is often used to characterize the th..:rmal
response in eqn (I); but as seen in the following. it is more convenient to use .1. r is the
independent time variable; ! is the terminal time in the analysis interval [O.!] : and x denol..:s

t Suhscripls represent components in a Clrlesian coordinate system and the summation convention is used.
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the position vector. All quantities are defined in the body B or its bounding surface oB (with
outward unit normal vector n) and are assumed smooth enough to justify the operations
performed. de and da represent differential elements in Band cB. Here. G is assumed to be
differentiable with respect to the design; in practice this assumption is not always met
(Haug ef al.• 1986). Although G is defined in integral form. localized performance criteria
over the spatial and, or time domains can be obtained by incorporating an appropriate
weighting function.

The response of the system is implicity governed by the design and the mixed boundary
initial-value problem of thermoelasticity. The standard forms of the equation ofmotion and
the energy balance equation are replaced in the following by the convolution expressions. (:~)

and (3). following a development by Carlson (1972). The nonstandurd forms are introduced
becuuse they lead to a reciprocal theorem thut is used to define the adjoint system in Section
Y. If Ijl and t/J ure sculur functions defined on B x [0. f]. then the convolution operutor is
ddined as Ijl* t/J(x. r) ::; JI~ cP(x. r - flt/J(x. fl df. The convolution has the following properties
(see Carlson. 1972. for u more detuiled discussion): (i) cP * t/J ::; t/J *Ijl; (ii) (Ijl* t/J) * (I) ::; cP *
(t/J*w)::; ¢*t/J*w; (iii) cP*(t/J+w)::; cP t/J+cP*w: (iv) ifep is smooth in time. then cP*t/J::;
(~ * 1/1 + Ijl('. 0)1/1. We define the generalized time und unit functions as i(x. r) == r: and
I (x. r) == I. Then the thermod'lstic system equations are (Carlson, 1972):

- I * ([... +.!#+ O".\I"E" ::; c:} In 8 x [0. f]

([, ::; - K'dl, ttl Ii x [0, fl

E" ::; !(II", +II,..) in lJ x [0. I]

g, ::; :1" in 8 x [0, IJ

S, ::; S"II, on DB x [0, IJ

cr' ::; ([/1, on i'8 x [0. I]

II, ::; II;' on A" x [O,t J

s, ::;s;' on A,x[O.I]

:J ::;:F on A:, x [0. I]

cr' ::; ([,. on A" x [0,1]

(2)

(3)

(4)

(5)

(6)

(7)

(X)

(9)

( 10)

( II )

( 13)

( 14)

In the above ( )" == i 1
( )/('x,: and symmetry of the stress tensor is assumed. The psclldo

h(lcZr '/I/rn' .A(x, r), and psmdo heal sllpply .!#(x, r), arc defined respectively by:

(15)

( 16)

The functions uo(x). vo(x)••'l°(x). and EII(x) represent the initial displacement. velocity,
temperature difference. and strain fields, respectively. These quantities arc treated as design
fields since they are specified explicitly in the analysis. Au and A, are complementary
subsurfaces of ('8 as are ...1;/. A". and ...Ie. Au and A, correspond to surfaces with prescribed
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displacement ul'(x. !). traction sP(x. !): A·I • A q • and Ac have prescribed temperature differ
ence :.V(:I(. !). surface flux ql'(x.!) and convection conditions. The relationship between the
locations of surfaces Au and A, to surfaces A:I • A". and Ac is arbitrary. Since up. sl'. :~I' and
(l are prescribed. they are also treated as design quantities.

We now show that eqn (2) must hold for a dynamic system governed by the equations
of motion with initial displacements. unix). and velocities. vO(x). We take the convolution
of the standard motion equation. S".,+h, = iii' und then integrute the right-hand side by
parts: i .. (SI!.,+hl ) = i .. (pul)= p r;l (t - r)ii(r) dr = pll,- p[tl·;I- lIn Combining this result
with eqn (15) we recover eqn (2). We can demonstrate the converse result. that if eqn (1)
is sutisfied then the standard form of the equation of motion must be satisfied. by differ
entiating eqn (2) twice with respect to r. Convolution property (iv) is used in the first
differentiution. Thus. we cun state thut the equation of motion is satisfied if and only if eqn
(2) is satisfied. Similar arguments can be used to relate eqn (3) to the standard form of the
energy balance equation (in this case we only differentiate once with respect to r).

The objective ofa sensitivity analysis is to derive a relation for (lG in which only explicit
variations of the design fields are present. In Section 3. the muterial properties (C, p. K. c.
l\1. 0... and 11) and loud data (b. r. ul'. sl'. :)1'. It. :)x. u". vU• E". and :JII) are varied with the
shape held fixed; und an explicit expression (lG D is derived. In Section 4. the muteriul
properties and load duta ure fixed while the shape is varied: and an explicit shape sensitivity
expression (lGI • is derived. The total variation <5G is evaluated from the stirn (lG f) + (lG,.

3. VARIATIONS OF MATERIAL PROPERTIES AND LOAD DAT,\

The direct expression for <5Go is

+f !J."ils l Uti +i g,u, <5u l dtl +i .q""i5q'da
'.. ..I, .I:J

( 17)

where a~ == tllj?h.
The evuluation of this expression is not straightforward due to the presence of the

implicit response variations «5u. (5:~. i5E. J~. (55. Jq. Js. und Jq') which must satisfy eqns
(2) -( 16) for the vuried design. That is. the following equations must hold:

(I X)

(20)
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<5q; = -JK,jgj-K'jJgj in Bx[O.t] (:! 1)

J£;, = !<Ju,.j+<5Uj.J in Bx[O.t] (:!:!)

<5g, = J:J.; in Bx [O.t] (:!3)

Js, = <55" nj on cBx [O.t] (24)

Jq' = Jq,n, on cBx [O.t] (25)

Ju, = Juf on Aux[O.t] (26)

Js, = Jsf on A, x [0. t] (:!7)

J.1 = J:JP on A:/ x [0. t] (28)

Jel' = e)qp on Aq x [O.t] (29)

15q' = J/'(9 - ,'}, )+ /'(I):~ -J:~, ) on Acx[O.t] (30)

wht:re

(31 )

(3~)

In sensitivity analysis of dliptic problems. such as static eI~lsticity. rt:ciprocal theorems
or lllutual energy principles that result from the sdf-adjoint nature of the governing eqU:l
tions can be invoked to eliminate the implicit response variations (Phelan and Haber. 19l'i9).
1n these methods. the reciprocal tht:orem relates the load and response fields of a lktitious
adjoint system to the design and response variations of the real system. LJ "fo:"~l.lnately. the
standard forms of the equation or motion and the energy balance equations for the transient
thermoelastic problem arc not self-adjoint: so they do not lead directly to weak-form
reciprocal relations. Now the utility of the nonstandard rorms of eqns (2) and (3) becomes
apparent: despite the lack or self-adjoint operators in the standard equations. a relationship
of reciprocal form can be generated (Carlson. 1972) because or the symmetry of the
convolution operator; and we can use the reciprocal relation to eliminate the implicit design
variations in the sensitivity expression. Further. the initial conditions are now incorporated
in the formulation. and their variations can be considered in the sensitivity formulation.

It is not necessary to usc the convolution equations in solving the re:t1 and adjoint
systems -their key function here is to facilitate the formulation of the adjoint system and
the definition of the adjoint data. In fact. we have used the standard equations and
wnventional time integration methods in formulating our numerical solution algorithms
for the real and adjoint problems (see Section 6).

The adjoint system equations are presented next. A tilde denotes an adjoint load or
response quantity-the only fidds that dilfer between the real and adjoint systems. Note
that the adjoint system is defined on the same space-time domain as the real system and
that the two systems share the s"me m"teri"l properties. In fact. the adjoint and the real
system equations arc of nearly the S:lme form. except for the introduction of applied stress.
strain. temperature gradient and heat nux fields in the adjoint equations (to obtain identical
system equations. the ~lpplied terms could be formally introduced to the real system equa
tions and set to zero). A reciprocal theorem is introduced below and a method is presented
to determine the adjoint load data needed to relate the implicit response variations or the
n:al system to the response or the adjoint system. The adjoint system equations arc:
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- 1* riu +.jj+ (JoJ/"E" = d In 8 x [0. t]

'i, = -K,,(9,-,ij/)+,t In 8x[0.t]

9, = :J., In 8 x [0. t]

5,='s"II, on c8x[0./]

,[' = 'i,ll, on ,'8 x [0. t]

Ii, = Ii;' on A" x [0./]

,~, =,~;' on A,x[O.t]

:T = :JI' on A j x [0. I)

([' = 'il' on A" x [0./)

1[' = hUJ-I),) on ,.Ie x [0,/]

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

where the adjoint load data consist or the pseudo body rorce Jd(x. r). pseudo heat supply
Ji(x, r), applied stress tensor S~(x, r), applied strain tensor E~(x, r), applied temperature
gradient ~~(x, r), applied heat flux vector qA(X, r), prescribed displacement ijl'(x. r). pre
scribed surl~lce traction sl'(x, r), prescribed relative temperature :J'O(x, r), prescribed surface
flu." (i"(x, r), and sink temperature IJr~(x, r). The applied terms are, in some ways, analogous
to initial stress or strain terms common to elasticity problems. However. the applied tams
arc time-dependent and need not be symmetric. These data arc chosen to annihilate the
integrands in eqn (17) with implicit response variations, as explained below.

Carlson (1972) presented a reciprocal theorem valid ror dynamic thermoelastic systems,
In the present rormubtion, this theorem is modified to relate variations in the real system
[elJns (18)-(32)] to their counterparts in the adjoint system [elJns (33)-(45)],

Theorem I, Suppose (/ thermod(/slic system is ,whjecled 10 tim separatt: '~l'IIamic loael
systems, Ihe rl'al (/nd adjoint. Next. suppose Ihe material properlies and load data of the real
system (/rt: caried, C-+C+/)c' II-+P+()p, K-+K+6K, c-+c+6(', M-+:\I+(j:\1. 0,,-+
()" + 600 , b -+ b+ ()b. r -+ r + ()r, u" -+ u'O + ()ul', SI' -+ s" + 6s". ,'}I' -+ .'JP + 60'~", q" -+ q" + (jp". II -+

h + MI. ,'~, -+ ,'~, + (),'~, . un -+ UO + (ju". v" -+ \." + (h·o. ,'~" -+ ,,~o + (j:J". alld E" -+ E" + (jE". Theil

Ulld



Sensitivity analysis fur wup1c:d thermudastic systems

i.f fi,. JS,da+ f ii,. (J·:i4i -Jpui ) dl·-i. [ £". (JCi,k,£,,+.'JJ-tf,,) de;8 J8 J8

- l.:-. I. f (A".';; +ci,'). J,q,de.
, 0 JB

(47)

The symmetry of C. K. and the convolution verify the tlrst equality. Several applications
of the divergence theorem. symmetry of C K. M.•lOd the convolution. and eqns (18) -(45)
transform the first equality to the second.

This theorem is nov,,' used to eliminate the integrands which contain implicit variations
in (lGn. First. the implicit and explicit variations in eqn (47) arc isolated:

is 'h.kkd to each side: and eqns (IX) (45) are substituted to give

- i.f .~,. I)U;' d(/ +i.f Ii,. (h;' del + [ Ii, • (l).!d, - ()I'u,) dr - i .. [ (/?". :M-tf"
-'. .~. JII J/I

.,. .,. if· i f-+ (E" - E,~) .. (jc.,,,l:~/) dr -J • I. . ci' • ():JI' del + if. I .. .'J .. ()If" del
/ 0", II ../.,

+i. f.?; .. ()u, d(/ + r~, .. JII, dr +i ..i(£,; .. c5S" - .5;; .. ()E,,) dr
t, J, H

(48)

Equation (48) is differentiated twice with respect to time to relate the right-hand side
of this equation to the integrands that contain response variations in (5Gf):
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-f S,.Duf da+l u,.Dsfda+ r(u,.(Db,-bpu,)+d/I, •.npJu,O+u,II •.npJI'?)dl'
~. ,t, Js

'f- 'f 'f- '1-- - • .:J". (5'1' da + -. . (i". 15;) da - -. (} • It(),'} da - - .# • (5:J dt'
00 ..I, 0Il ". 0" Ie 0Il B

- (; •r(-lj,'. ()q, + (i;' .159,) dt'
" In

(49)

where (') == d( )/dl and () == d 2
( )/d/~.

The right-hand side of this equation is equated to the integrands which contain implicit
variations in ()G". to define the adjoint data as:

h,(x.l-r)=/,,,I,,.n 111 Bx[O,IJ

"':1
-1>,1/"'1 in IJ x [0./]S,,(x.l-r) =

1?;;(x.l-r) = /\,II •.n In B x [0./]

.i(x. 1- r) = -Oor,II,.n 111 IJx [0./]

lil'(X,I-r) = -g."II'.r) on A" x [0, I]

.I~/'(X. I-r) = 9,,,,II,.n on A, x [0./]

l.iJI'(X.I-r)=-O".lJ.<f,II,.n on A;lx[O.I]

I. (/"(X. I-r) = O"g,",.n on A" x [0. I]

- 0"J.,f}r(X.I-r)=-7;!I,;,IIUI on AcX[O./]

ii," = 0 111 B

c/o = 0 III B,

(50)

(51 )

(52)

(53)

(54)

(55)

(56)

(57)

(5X)

(59)

(60)

(61 )

(62)

The left-hand side ofelJn (49) replaces the integrands in (jGn which contain variations
of the response fields and the explicit sensitivity is obtained:
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+ !H"J!.)O + !h,Jh, + !,Jr) dl' +Lg."~JlI; da + t9 ,;,15.1'; da

+f g..",(i,'Vda+f g.,,,J'(da+f (9I,()h+ll.:l, <i,1 , )da)dr
t j .t.J A("

-t, s, * (ill; da+t Ii, * Js; da +1(Ii, * (M" - (ipii,)

~ ~ If If~+ (E" - Ei~) * (iC,kIEk/) dr - }' * ,r * (i,'V da + T * ,'I * (ie!" da
I II '., I II '"

-cill"M"E"-IIII(i'\!,,E,,)dl'+ 1*1 Cei,-.li,')*ti!\"y,dl'.
(}" 1/

(63)

Note that the solution to the adjoint problem must be available to render eqn ((13)

explicit. If the finite ekment method is used to evaluate the real response, then the adjoint
response can be computed in an ellicient manner. At each time step. the adjoint load vector,
dclined hy eqns (50) (62) is assemhled and back-substituted into the decomposed stitl'ness
matrix that was used for the real analysis. Ifuniform time steps are used for the real analysis,
then only one stilrness matrix decomposition need he performed to evaluate hoth the real
and adjoint responses (Tortorelli and Ilaher. I<)X<J).

~. VARIATIO~S OF SIIAPE

To formulate explicit shape sensitivities domain parameteril.ation is used (Haber,
1<)~7; Phelan and Haber, l<JlN). A reference configuration 8', described in an independent
reference coordinate system with position vector 1', is introducd such that

x(r) : B' --+ B (64)

where x is a deformation-like mapping. The configuration B is defined by the image x( W)
and the variants of this configuration by x(B') +()X(B'). This method for ohtaining shape
sensitivities was also proposed by Cea (1<J~ Ia,b). II' the isoparametric finite element method
is lIsed to perform the real analysis. then the isoparametric mapping is a natural choice to

\

locally define x. Over each dement, x = 2: "1..,11, where "1.., is the coordinate vector of the
1- I

=tth node in the dement. II, is the corresponding shape function, and N is the number of
nodes in the clement. With this mapping, the sensitivities are expressed with respect to
variations of the node coordinates which serve as the fundamental design parameters.
Typically, the coordinates arc linked to a smaller number of glohal geometric design
parameters (e.g. Braibant and Fleury, 1984).

The next step in the derivation is to rewrite all the field quantities as functions of I'

over the reference domain. For example. h = h(r. r) on W x [0. rl. G is transformed to the
reference configuration by the change of variable theorem (Hildebrand, 1(76):
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G = II [I /(U,. E". 5". 3. g,. q" C.,kl. p. K'i' C. ''-['i' 00 • h,. r)J dr'JIl J8'

+( g(UI.SI.3.Cf,.h.3J:JKdar]dr (65)
J/B~

where J == dl'/drr is the determinant of the Jacobian tensor J with components J" == x,.,;
( ) J := ('( )/h,: and K:= da/dd is a surface area metric (Haug et a/.. 1986; Tortorelli ct
al.. (990). drr and dar are differential elements of Br and ('B'.

A variation Jx gives

+f'.cr,,i5s, K da' + f 'g.lI,Ju, K del + f, g.'!,(Jq' K dar + f.gjj,?K dar
"'1 A, A:1 A"

whac liJ ~lIld M..: arc cxplil..·it function~ of x and its variation Ih (Tortorelli c( al., (9l)0).

Equations (2)-( 14) must also be transformed to the reference domain. This IS

accomplished by expressing the conservation laws over B r
:

( .A,(r. r)J dr' +i. ( s,(r. r)K det' = ( 1I1t,(f. r)J dr' on [0./] (67)
JII' JI/' J/I'

(.~(r.r)+I.{}lIM,,(r.r)E,,(f.r)Jdl"-I.f e(f.!)l\do'=f (','J(r.,.)Jdr' on rO.r]JII' ,',,' /I'

(61{)

and utilizing the divergence theorem. Nanson's relution (Ruthe. (9~2). and the elwin rule:

i. (JJ/",15",,),+::4,J:;;:: pIl,J in Br x [O.r}

-I. (q,JJ",,') ",+;jfJ+OuM"E"J = C:U in B')( [O,r}

5" = C,/K1Ekl + :JM'J in B r
x [0. r]

E'i = !(II, ",J/~/ +II/",J,,:,I) in B' x [0. I]

gj = .')",J/~,I in S' x [O.r]

/I, = /lr on A: x [0. IJ

S, = sf on A" x [0, r]

,9 = .9" on A~j x [0. /]

(69)

(70)

(71 )

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)
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q' = qP on A~ x [0, t]

q'=h(9-9x.) on A~·x[O.t].

I~S7

(80)

(81)

This transformation is similar to one presented in Tortorelli et al. (1990) for e1astodynamic
systems.

If the governing equations and boundary conditions are satisfied in the current design.
then the variation of eqns (69)-(81) provides equations which ensure satisfaction of these
relations in all neighboring designs. For the case of shape variations. this condition is
ex.pressed as

i. (JJJ,;; Sm,) 1 +i. (Je)J,-..1 Sm,), +i. (1J,;,,' JS"'i) , + .A,JJ

=pJII,J+PII,JJ In B'x[O.t] (8~)

- I • (Jq,JJ,;;,')", - I • (q,JJJ""'),,, - I • (q,JJJ,;;,') '"

+.?PJJ+On,tl"JEi,J+OnM"E"e)J = cc);)J+c,'}JJ in B' x [0. t] (83)

e)q, = - K"C)9, in B' x [0. t]

(84)

(85)

,)9, = J;}",J""I +,'} ",e)J"" I III /J' X [0. t] (87)

c)q'K+q'JK = e)q,JJ""'n;,, +q,c)JJ""'n;,, +q,JciJ"" 'II;" on c1/J' x [O,t] (89)

e) II, = 0 on II: x [0. t]

Js, = 0 on II'. x [0. t]

!5:} = 0 on lI~j x [0. t]

Jq' = 0 on II~ x [0. t]

Jq' = he);} on II~· x [0. t]

(90)

(9 I )

(9~)

(93)

(94)

where e)J - I is also an explicit function of the current shape and its variation (Tortorelli et
al.. 1989. 1990).

A theorem for shape variations, based on reciprocity and similar to Theorem I. is
constructed from eqns (8~)-(94).

Theorem 2. Suppose a thermoe!astic sy.ftem is sllhjected to t\l'O separate {~t'llamic load
systems. the '<'al and adjoint. Next. sllppose the' domain of the thermodynamic system is
mried x -+ x+Jx. then

and
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i.1 (Js,K+s,JK). a, da' -i.1 (JJJ;',! 5" +JJJ;;,/ 5,,). atm dr'
,8' 8'

+: .1·1 (q'JK+Jq'K).fJda'-L: .1·1 (qIJJ;,I!+q,JJJ,~,I).O",dl"
Un ,'8' Uo 8'

+ L: • f (c,')()J - lIuAf" £"JJ - OuAf"tI,mJJ,~,' -.-xJJ) • [J dr'
Un Hr

(96)

Proof of this theorem is similar to the verification of Theorem I. after the appropriate
transformations to the reference configuration have been performed.

The manipulation of eqn (96) to isolate implicit and explicit variations, the addition
of

tl) eal:h side, the substitution of eqns (33) (45) and (82)-(94), and two time dill"crentiations
yields

1.1",. li,(jf{ da' - r (S". Ii, '" +S" • u,,,,)()J,,,/ J dr' - r (S". I?"
<'1/' JIt' JIt'

I I - I i -+ (pii, - h,) • li,)()J dr' + 0'-. q' • :Je5K da' - 0'-'. (q, • :J", + ti, • :J",)(5J"" I J dr'
o "or 0 0'

If- If 11-- • :~" • c)q' K da' + • ei" • (j,'JK del - _.. . ,'J ./tJ,'JK da'
VU "" 011 .~~ 011 ,,;

_(}I r .;;.c),'Udr'-OI. r (-!j;~.(jq,+ii/.J9,)Jdr'Jdr
II JII' II JII'

I (-II )" I -II ~ I )J d '+ II, pc ti, (ul + I', pOll, 1>.1) l' .
fl'

(97)

If the adjoint data arc specified by eqns (50)-(62), then the right-hand side of this
expression is equal to the integrands which l:ontain the implil:it response variations in JG.\.
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Thus. the left-hand side ofeqn (97) replaces the implicit terms in eqn (66) to give the explicit
sensitivity:

JGx = r S;. u,JK do' - r (S,j. u,m+S,j. u;m)JJ;,,'J dt" - r (S" * E"
JtB' ]B' Ja'

I I -. I i -+ (pii, - b;) .1i;)JJ dr' + 0-. q' • ;}(jK d,f - e-· ('I, • tJ m
f) t;8' n 8~

(98)

Note that the adjoint systems for the evaluation of ()GD and JGx are the same. thus only
one adjoint problem need be solved.

There are two versions of the material derivative method: the domain and boundary
methods. To compare the above result to the one obtained by using the domain version
of the material derivative method (Haug et al.• 1986). consider the following mapping
x = r+ I\V(r) in which the reference configuration coincides with the current real con
figuration. i.e. B = B': 1\ is a time-like parameter, and V is a fictitious shape design velocity
field. Ultim'ltely. JGx is expressed in terms of the explicitly defined field V. which is viewed
as an instantaneous velocity field that defines a deformation-like variation of the current
design geometry. At the current dcsign. B = B' and 1\ =0; so J is the identity tensor,
I~( )/t'x, = t~( )/t'", and J = K = I. 1\ is the variation paramcter in the expression for x.
Therefore.l)x = ()I\V. I)J" = ()"Vi-I' JJ,j , = -()"V,.,• <lnd (5J = (51, V,., (Haug ('f al.• 19861.
M\ is transformed in a similar manner. Only the normal component of the velocity field is
retained in the surface integrals of the material derivative formulation which is presented
in Haug ('f al. (19~6). When applying the finite clement method to such rorll1ul<ltions.
caution should be exercised. Tangential perturb<ltions of nodes might be required to retain
mesh regularity during a shape design process. In general, these tangential movements will
affect the solution; therefore. they should be considered in the evaluation of JGx . The
boundary version of the material derivative method can lead to inaccuracies when
implemented with the finite clement method.lx-cause it requires the evaluation of response
quantities over the boundary. Some of these quantities (e.g. stress and strain) are dillicult
to accurately compute over the boundary (Haug et al.. 19S6). Neither the domain version
of the material derivative method nor the present domain parameterization method suffer
this drawback.

5. UNCOUPLED. COMBINED QUASI-STATIC UNCOUPLED. AND STEADY·STATE
PROBLEMS

Sensitivities for the uncoupled. combined quasi-static uncoupled. and steady-state
problems are obtained as specializations of the previous results.

In the uncoupled theory. the O,/vf'JE,j terms and their time derivatives arc neglected.
It is also necessary to eliminate the thcrmo.coupling (the §M term) from the adjoint stress
constitutive relation. Equations (46) and (47) become

I • i.i £" • C,jklJEk/ dl' - i. I • i iii • K,,(jgJ dl'

= I * i *i JEij • C'iklEkl dr - i. I ·1 (jg, * K,,ij, dr (99)
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+ i '" I '" ( 'i' * J:J da - i * ( ,; * J:J dl' - i * I * ( (K" g/ + ({,~) * by, deJo J8 J8
Addition of

( 100)

to each side. m.mipulation to isolate implicit and explicit variations, substitution of the
moditlcd forms of eqns (18)-(45), and three time differentiations give

+ ( (ti, -.il) '" 151\".'1 I dl' = I' [-f Ii; '" <h, da +f ,~:' '" 611, da + ( (h, '" 611,
J/I ""..1, J/I

+ E,; * ()S" - .c;;~ '" () E,/) dl' - f ,'JI' '" (5,( dll + f til' '" ()o'} dll - f :J '" M,'l da
"J A" A("

The adjoint data are again dctined to annihilate the response variations in bGn :

h,(x.t-r)=/..,I".<1 in Bx[O.t]

..,~

S,/(x.l-r) = -!t."I,u) In Bx[O.t]

E;~(x.t-r)=!S'il,u. in Bx[O.t]

(101 )

(102)

( 103)

( 104)

r(x.t-r) = -.r"".rI+(E,/(x.t-r)-E;~(x.t-r))M'I(x) In Bx[O.t] (105)

,(,'(x.t-r) = -!q,I".r. In Bx[O.t]

.qi~(x.l-r)=f.,I"r) in Bx[O.t]

( 106)

(107)
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IiP(x. t-r) = -9",11,-,1 on Aux[O.t] (108)

S'P(x. t-,) =9.u,lc •. '1 on A,x[O.tl (109)

[jP(x. t- r) = -9;~'lc •. '1 on A. I x [0. t] ( 110)

,rex. t - r) = 9.:111.." on A~x[O.t] ( III)

I
:Jf.(x.t-,) = - i~9;.~I( •. '1 on Acx[O.t] ( 1(2)

li:J(x) = 0 In B at .=0 (113)

1~~(X) = 0 in B at .=0 ( 114)

[j°(x) = 0 in B at r = O. ( 115)

Special care must he taken in solving the adjoint system because the adjoint stmin is present
in the dctinition or r. First. the adjoint clastic response (ii. t. S. and il) is determined. Next.
the adjoint stmin and the functional definition arc used to define the adjoint thermal data;
and the adjoint thermal response (:r. g. q. and en is determined.

The left-hand side of etln (10\) replaces the implicit rL'Sponse variations in etln (\7) to
form the explicit sensitivity:

-1 {r·~:JPd(J+ f .'l.JqPd(/+I.[j·(~h(.'~-")t.)-hML)d(J;(, J~iI A(

( \\6)

The same adjoint system is used to obtain ~Gx:



<5C , = I '\ * li,M\ dtt' - r (5, * Ii, m +5'1 * /I mhV",' J dr
r - r (5,/ * l"

";' H' wH' wY'

" r.+ (pii, - h,) * Ii ,,5j dr' + I I( * :J(U;: dar - {//, * :J '"
"",' H~ .. B~

( 117)

The I;'ornhined ljuasi-static uncoupkd theory introduces additional simplitkatil1ns, The
inertial tenllS arc neglected in the motion equations to eliminate the displacement time
derivatives from all equations. Time is no longer a parameter in a steady-state analysis: so
all terms which contain time derivatives are omittcd and all operations which involvc time
integration. dill'crcntiation. and convolution are dropped.

if a quasi-static or steady-state boundary-value problem is a traction problem. i.c.
A" = n. then the design functional must be defined to ensure global eljuilibrium of the
adj\lint system, Likewise. for steady-state problems. if A,j = 0 and ..Ie = O. / and.'! must be
defined to ensure a global energy balance for the adjoint system. Fortunately. such problems
arc seldom encountered.

The sensitivity formulations presented in this subsection differ in some respects from
those \lhtained hy Dems (19~6) for uncoupled dynamic thermoelasticity and Meric (f9X6.
IlJXX) f\lr steady-state thcrmodastil.:ity, Here. the domain paramcterizati\ln method is used
t\l derive shape variati\lns; and the convolution is used rather than a time mapping for the
transient prohlem.

Thcsc results C;III be spel.:ialized for transient or steady-state linear dasticity or con
ducti\ln problems to ohtain sensitivity expressions consistent with those presented in DClllS
;trld I\.froz (1<)X3. 19X51. I)ems (llJX6). Haher (19X7). Meric (19X6). Phelan and lIabcr
(jl)XI) and Tortorelli (,{ Ill. (llJX9. IINO). In Dems and MrOl (19X.J. 1%7). the lllateri;i1
derivative approach is llsed to obtain shape sensitivities. rather than thHllain para
lllcleri/a tion.

6. EXAMPLE

In this section. design sensitivity cakulations for a thermoelasti<.: system suhjected to
transicnt elastil' and thermal loading arc presented. The sensitivities arc c\lll1puted using
the adjoint load nll.:thod presented above. and also using the finite ditrerem:e method for
the purpose of verification. The example studies the start-up responsc or a four-cylinder
;llltolllntivc engine. Sensitivities arc <':olllputed for performan<.:e functionals corresponding
to displacement comp~lllents lit scle<.:ted nodes and the von Mises efl'cctive stress at an
clement Gauss point. Sensitivities with respect to variations in the <.:ylinder wall thickness
and the hcat transfer <.:odlicients on the inside (gaseous) and the outside (coolant) or the
<.:ylinders arc <':ll!llputed.

The simulation uses a tvvo-dimcnsionall11odel of thc engine (sec Fig. I). whi<.:h consists
or .J50 eight-node. ,) x 3 integration. isoparametri<.: quadrilateral clements and 15X3 nndes.
Symmetry ahoul the x-axis is invoked and plane-strain clements arc used to model the
elastic problem. Nnde 719 is llxed to prevent rigid body motion. The c1asti<.: problem is
modded as a ljuasi-static system and the thermal problem is modeled liS a fully transient
system.

The start of the power stroke coincides with the zero degree position of the crank. The
gas pressure amI the gas temperature inside the cylinders arc a function of the crank angle
liS shown in Figs 2 and 3. respectively. The temperature of the coolant on the outside of
the cylimkrs is assumcd to be constant at room temperature (293.16 K) throughout the
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Fig, I, Finite e1emt:nt model of a cross-section of a four-cylinder automoth'e engine,

engine start-up. The initial temperature of the engine is also room temperature. Convective
boundary conditions are applied to the thermal problem in which the convective coefficients
on the coolant side and the gaseous side are 7040 and 116 W m -1 K - I. respectively. The
operating speed of the engine is 3000 rpm and the cylinder firing order is 1-3-4-2.

The materi'll properties of the current design are those of cast iron: the modulus of elas
ticity is 103.4 GPa; the Poisson's ratio is 0_25; the thermal conductivity is 29.0 W m- I K -';
the mass density is 7196.6 kg m - ): the specific heat is 440 J kg- I K - I ; and the coefficient
of thermal expansion is 0.0000129 m m - I K - '.

The sensitivity functionals were defined to represent the distortion of the cylinders and
the stresses in the engine during operation. An analysis was performed for a total time of
0.0525 s (which corresponds to a crack rotation of 945") with a time step At =0.000278 s
(corresponding to a crank rotation of 5') to identify the point of maximum von Mises
effective stress during the operation of the engine. The analysis showed that the highest
von Mises stress occurs in clement 70 at the Gauss point with parametric coordinates
( - 0.7746. 0.7746) at time r = 0.000833 s. This time also corresponds to the maximum gas
pressure.

A Dirac delta function located at the critical Gauss point was used to localize the von
Mises stress performance functional for the sensitivity calculation. In addition. the sen
sitivity of the x-displacements at nodes I and 141. and the y-displacement at node 73
(which arc representative of the distortion of the cylinder) were c'llculated using functionals
containing Dirac ddta functions at the appropriate nodes. It is dillicult to incorpOf<lte
Dirac delta functions in the time domain in numerical integration schemes. Therefore. an
approximation was used in which the functionals are sampled over a single time step and
the normalized by the length of the step. The performance functionals used in the sensitivity
analyscs arc:

72063018090 270 360 4SO

Oank AnaJe (Dep:e)

Fig. 2. Gas pressure inside a cylinder vs crank angle.
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72063054018090 270 360 450
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Fig. 3. Gas temperature insIde a cylinder vs crank angle.
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( 118)

I f"lGz = A ()(x-x1I)r71 dl'dr
or " II

( 119)

(120)

(121 )

where x". II". amle" refer to the coordinates and the x- and X-displacements of node 11; and
()(x - Xl')'~l' refers to the von Mises stress at the Gauss point in clement 711. The time interval
over which the functionals .Ire sampled is given by t, and f l , where f, =0.000556 sand
(I = 0.000lD33 s. The fraction (ljLlr) is the normalization 1~lctor for this interval. The values
of the functionals are - 0.02405 mOl, 0.01885 mOl, - 0.00779 mm, and 45.56755 N mOl - ~,

respectively.
The adjoinl loads for each of these functionals are defined through eqns (102)-( 115).

For example, for functional G I, the 'Idjointload set for the clastic analysis is given by:

if r E [O.00027X, 1l.01l0556J

otherwise.

The 'H.ljoint thermal load set is defined by:

r(x,f-r)=I?,,(x,f-r)Af,,(x) III l/x[(l,{].

All other adjoint loads arc zero.
The variations with respect to the wall thickness are found for all the above functionals

by moving the nodes on the inner surface of the cylinders radially inward. The explicit
sensitivity expressions require one adjoint solution for each of the four functionals in
addition to the actual solution for the current design. As previously mentioned, the adjoint
solutions arc found by assembling the adjoint load vectors and peforming back-substitutions
on the existing decomposed stiffness matrices (one for the thermal analysis and one for the
elastic) which were used for the real analyses. The sensitivities with respect to variations of
each node coordinate arc then computed as discussed in Section 4. Finally. the variation of
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each functional G due to perturbations in wall thickness is determined by the chain rule

(122)

where R refers to the wall thickness and X, are elements of the global node coordinate
vector that lie on the inner surface of the cylinders.

(n a similar fashion. the variation ofeach functional G due to changes of the convection
coefficients is found from

( 123)

where h,; :x = 1,2 are the convection cocfficients of thc outcr and inner walls. respectively.
Note that the adjoint solutions required to compute each ('G/('J:, are also used for the
calculation of the corresponding ('G,c'h,.

To verify the adjoint scnsitivity calculations. finite ditlerence sensitivities were also
computed. The finite difference shape sensitivities are given by

('G G(R+dR)-G(R)

('R dR
( 124)

where dR represents a perturbation in the wall thickness. The finite difference sensitivities
with respect to the convection codlicients are computed in a similar manner. Each finite
dilfen:nce sensitivity cakulation re4uires one 'Idditional real analysis. Thus, the finite diller
ence sensitivities re4uire considerahly more computations than the adjoint scnsitivities, as
the stilrncss matrix needs to he reassemhled and decomposed. In general. a range of values
for L\I< should he tested to ensure that reliahle results are ohtained (thus further increasing
the computational expense). As seen in Tortorelli and Haher (19X9) large and small mag
nitudes of dl< kad to truncation and round-oil' errors. respectively.

The sensitivities of the four functionals with respect to variations in wall thickness are
shown in T'lhle I. The results from finite dillerence sensitivity calculations for six values of
dl< arc also included in the table. Similarly, the adjoint sensitivities with respect to variations
in heat transfer coellicients on the coolant side and the gaseous side of the cylinders arc
shown in Tahles 2 and 3. along with their corresponding finite dillerence results.

As seen from the tahles. an increased wall thickness increases the values of G I and G,
and decreases the values of G 1 and G~. An increase in the value of the outer convective
codlicient will increase the value of G, and decrease the remaining functional values.
Increases in the value of the inner convective coetlicient will increase G1 and decrease the
other functionals. By comparing the magnitudes of the sensitivities, it is seen that the inner
convective coellicient is the most inlluential. followed by the wall thickness and then
the outer convective coellicienl. Finally, it is noted that in all cases the finite difference
sensitivities are in excellent agreement with the adjoint sensitivities.

Tahlc I. Scnsitivitics due 10 variation in walilhickncss

('G 1 c'(j ! ,'G, ('G~

,'R ,'R ,'R ,'R

xlO
,

xlO I x to .J

Adjoinl 3.9952296 -3.4IX6460 1.03342X9 -X.79936X4

Finite t.R = O.lc+OO 3.9343140 -3.3970654 1.I14759H -H.69HH060
dilTcrcncc t.R = O.le-OI 3.9X90376 - 3.4165X72 1.()420779 -H.7901236

t.R = 0.1c-02 3.9946104 -3.41114412 1.0342990 -1l.79!l4540
t.R = CUc -03 3.99516X4 -3.4IX6255 1.0335157 -X.79927X4
t.R = O.le-04 3.9952260 -3.41!l643H 1.0334379 -8.7993612
t.R = 0.lc-05 3.9952224 -3.4186492 1.0334311 -8.7993684
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Table 2. Sensitivities due to variations in h on outer surface

t'G, tG, tG,
th th <'II

x 10" xlO xlO

Adjoint -2.1521062 -3.0618172 1.1305li61

Finite ~h = 0.le+02 -2.1513528 - 3.0607534 1.1301991
dilference M = 0.le-03 -2.1513528 -3.0607534 1.[301991

M = O.le-04 -2.1518722 -30617643 I.[ 307438
M = 0.le-05 -2.1506425 -3.0614436 1.1313982
~h = 0.le-06 -2.1365812 -3.0596482 1.[426749
M = 0.le-07 -2.0034021 -3.0260674 1.120870i\

tG,
/'h

x 10 '

-1.[066446

- 1.[062627
-1.1062627
-1.1066468
- 1.1062868
- 1.1042730
-1.0757019

Table 3. Sensitivities due to variations in h on inner surface

('G, tG, fG, tG.
t'h 21r ('Ir £'II

x 10-: x 10-: x 10-: x 10- 1

Adjoint -5.7166388 3.9972960 - 2.4497380 -1.5708049

Finite M = 0.le+02 -5.7206916 3.9893220 -2.4421287 - 1.5645337
dilference M = 0.le-03 - 5.71713411 3.99649611 -2.4489763 -1.5701914

M = 0.le-04 -5.71677114 3.9972168 -2.4496617 -1.5707433
M = 0.le-05 -5.7167424 3.99728811 -2.4497305 -1.5707988
M = 0.le-06 -5.716738ll 3.9972960 -2.4497373 -1.5708042
61, = O.le-07 - 5.7167388 3.9972960 -2.4497370 -1.5708045

7. CONCLUSION

Design sensitiVities have been formulated for the linear, dynamic, thermoelastic
problem. The variation of u generul performunce functional was determined with respect
to vuriutions in the explicit design fields including shupe. In addition to the fully coupled
problem, sensitivities for dynamic-uncoupled, q uusi-static-uncoupled, and steady-state
problems were also derived. In ull cuses, the reciprocul theorem was used to derive the
sensitivities, the convolution operator wus implemented to incorporute trunsients, and
domain puramcterizution wus used to describe shupe variations.

In un example problem. the finite element method wus used to evaluate the real
response, adjoint response, and design sensitivities. The sensitivities of stress and dis
plucement based functionals were found with respect to chunges in shape und load data. In
all cases, excellent agreement was obtuined between the adjoint sensitivity culculations and
the computationully expensive finite difference sensitivities. This agreement indicates thut
accurate sensitivities for the finite element model were obtained. As is ulwuys the case, the
analyst must ensure that the finite clement solution is sutlkiently accurate, so that the
computed sensitivities arc meaningful.
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